### **Return filters**

# MPT 116

Maximum working pressure up to 800 kPa (8 bar) - Flow rate up to 300 l/min



PASSION TO PERFORM



# MPT 116 GENERAL INFORMATION

#### Technical data

#### Return filter

Maximum working pressure up to 800 kPa (8 bar) Flow rate up to 300 l/min

MPT is a range of return filters with integrated breather filter, for protection of the reservoir against the system contamination.

They are directly fixed to the reservoir, in immersed or semi-immersed position.

The filter output must be always immersed into the fluid to avoid aeration or foam generation into the reservoir.

#### **Available features:**

- Female threaded connections up to 1 1/4", for a maximum flow rate of 300 l/min
- Multiple connections, to connect several return lines or drains
- Fine filtration rating, to get a good cleanliness level into the reservoir
- Bypass valve integrated into the filter element, to relieve excessive pressure drop across the filter media
- 2, 4 or 6 fixing holes for installation, to meet any reservoir surface flatness and roughness
- O-ring or Flat seal, to meet any reservoir surface flatness and roughness
- Screw-in cover with a special shape, to allow the filter element replacement without the use of specific tools
- Oil dipstick, to easily check the level of the fluid into the reservoir (sold as separate item)
- Extension tube, to be used in deep reservoirs (sold as separate item)
- Diffuser, to reduce the risk of aeration, foaming and noise (sold as separate item)
- Integrated breather filter, to clean the air that moves into the reservoir as result of the oil level fluctuation
- Integrated breather filter with pressurization valve, to clean the air that moves into the reservoir as result of the oil level fluctuation and to guarantee the pressurization into the reservoir
- Visual, electrical and electronic clogging indicators

#### **Common applications:**

- Light industrial equipment
- Mobile application

#### Filter housing materials

- Head: Aluminium
- Cover: Polyamide
- Bowl: Polyamide

#### **Bypass valve**

- Opening pressure 175 kPa (1.75 bar) ±10%
- Opening pressure 300 kPa (3 bar) ±10%

#### Δp element type

- Microfibre filter elements series H: 10 bar
- Fluid flow through the filter element from OUT to IN

#### Seals

- Standard NBR series A
- Optional FPM series V

#### **Temperature**

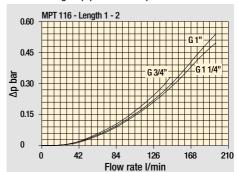
From -25 °C to +110 °C

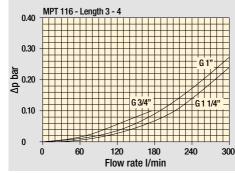
#### Note

MPT filters are provided for vertical mounting

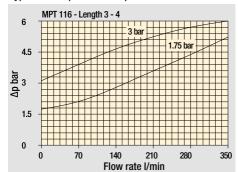


#### Weights [kg] and volumes [dm<sup>3</sup>]


|         | Weights [kg] |      |      |      |      | Volumes [dm³] |      |      |      |      |
|---------|--------------|------|------|------|------|---------------|------|------|------|------|
|         | Length       |      |      |      |      | Length        |      |      |      |      |
| MPT 116 |              | 1.10 | 1.15 | 1.25 | 1.50 |               | 0.72 | 0.93 | 1.28 | 1.74 |
|         |              |      |      |      |      |               |      |      |      |      |


#### Hydraulic symbols

|                |                    | IN                      |
|----------------|--------------------|-------------------------|
| Filter series  | Style 1 connection |                         |
| 1 11101 001100 | Otylo i connection |                         |
|                |                    | "                       |
| MPT 116        | _                  | $ \longleftrightarrow $ |
| IVIT I IIU     | •                  |                         |
|                |                    |                         |
|                |                    |                         |
|                |                    |                         |


#### Pressure drop

#### Filter housings $\Delta p$ pressure drop





#### Bypass valve pressure drop



The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.



# THE CORRECT FILTER SIZING HAVE TO BE BASED ON THE TOTAL PRESSURE DROP DEPENDING BY THE APPLICATION.

THE MAXIMUM TOTAL PRESSURE DROP ALLOWED BY A NEW AND CLEAN RETURN FILTER HAVE TO BE IN THE RANGE  $0.4 \div 0.6$  bar.

The pressure drop calculation is performed by adding together the value of the housing with the value of the filter element. The pressure drop  $\Delta pc$  of the housing is proportional to the fluid density (kg/dm³); all the graphs in the catalogue are referred to mineral oil with density of 0.86 kg/dm³.

The filter element pressure drop  $\Delta pe$  is proportional to its viscosity (mm<sup>2</sup>/s), the corrective factor Y have to be used in case of an oil viscosity different than 30 mm<sup>2</sup>/s (cSt).

#### Sizing data for single filter element, head at top

 $\Delta pc$  = Filter housing pressure drop [bar]

**Δpe** = Filter element pressure drop [bar]

 $\mathbf{Y} = \text{Corrective factor Y}$  (see correspondent table), depending on the filter type, on the filter element size, on the filter element length and on the filter media

**Q** = flow rate (I/min)

V1 reference oil viscosity = 30 mm<sup>2</sup>/s (cSt)

**V2** = operating oil viscosity in mm<sup>2</sup>/s (cSt)

## Filter element pressure drop calculation with an oil viscosity different than 30 mm<sup>2</sup>/s (cSt)

 $\Delta pe = Y : 1000 \times Q \times (V2:V1)$  $\Delta p Tot. = \Delta pc + \Delta pe$ 

### Verification formula

 $\Delta p$  Tot.  $\leq \Delta p$  max allowed

## Maximum total pressure drop ( $\Delta p$ max) allowed by a new and clean filter

| Application                   | Range (bar)                              |
|-------------------------------|------------------------------------------|
| Suction filters               | $0.08 \div 0.10$                         |
| Return filters                | $0.4 \div 0.6$                           |
|                               | 0.4 ÷ 0.6 return lines                   |
|                               | 0.3 ÷ 0.5 lubrication lines              |
| Low & Medium Pressure filters | $0.3 \div 0.4$ off-line in power systems |
|                               | $0.1 \div 0.3$ off-line in test benches  |
|                               | 0.4 ÷ 0.6 over-boost                     |
| High Pressure filters         | 0.8 ÷ 1.5                                |
| Stainless Steel filters       | 0.8 ÷ 1.5                                |
|                               |                                          |

#### MPT calculation example

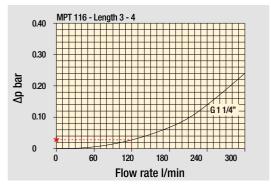
Application data:

Tank top return filter

Pressure Pmax = 8 bar

Flow rate Q = 120 I/min

Viscosity V2 = 46 mm<sup>2</sup>/s (cSt)


Oil density =  $0.86 \text{ kg/dm}^3$ 

Required filtration efficiency = 25  $\mu m$  with absolute filtration

With bybass valve and G1 1/4" inlet connection

#### Calculation:

 $\Delta pc = 0.03 \ bar \ (see graphic below)$ 



Filter housings  $\Delta p$  pressure drop.

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

 $\Delta pe = (2.50 : 1000) \times 120 \times (46 : 30) = 0.46 \text{ bar}$ 

#### **MPT** corrective factor

Corrective factor Y to be used for the filter element pressure drop calculation. The values depend to the filter size and length and to the filter media.

Reference oil viscosity 30 mm<sup>2</sup>/s

| Filter element |   |       | Abso  | <b>lute filtr</b><br>H Series | <b>Nominal filtration</b><br>N Series |      |      |      |                   |
|----------------|---|-------|-------|-------------------------------|---------------------------------------|------|------|------|-------------------|
| Туре           |   | A03   | A06   | A10                           | A16                                   | A25  | P10  | P25  | M25<br>M60<br>M90 |
|                | 1 | 28.20 | 24.40 | 8.67                          | 8.17                                  | 6.88 | 4.62 | 3.96 | 1.25              |
| ME 400         | 2 | 17.33 | 12.50 | 6.86                          | 5.70                                  | 4.00 | 3.05 | 2.47 | 1.10              |
| MF 100         | 3 | 10.25 | 9.00  | 3.65                          | 3.33                                  | 2.50 | 1.63 | 1.32 | 0.96              |
|                | 4 | 6.10  | 5.40  | 2.30                          | 2.20                                  | 2.00 | 1.19 | 0.96 | 0.82              |

 $\Delta p \text{ Tot.} = 0.03 + 0.46 = 0.49 \text{ bar}$ 

The selection is correct because the total pressure drop value is inside the admissible range for tank top return filters.

In case the allowed max total pressure drop is not verified, it is necessary to repeat the calculation changing the filter size.

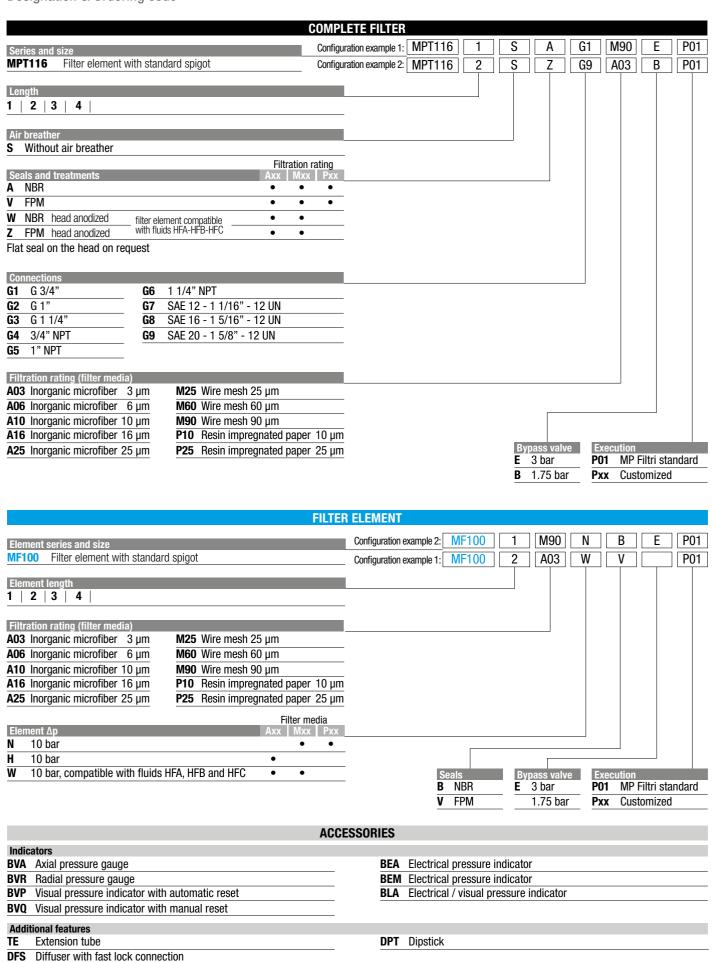
#### Flow rates [I/min]

|               |        |     | ment design - | Filter element design - N series |     |     |                   |     |     |
|---------------|--------|-----|---------------|----------------------------------|-----|-----|-------------------|-----|-----|
| Filter series | Length | A03 | A06           | A10                              | A16 | A25 | M25<br>M60<br>M90 | P10 | P25 |
|               | 1      | 18  | 20            | 53                               | 56  | 65  | 153               | 87  | 96  |
| MPT 116       | 2      | 28  | 38            | 65                               | 75  | 95  | 158               | 111 | 123 |
|               | 3      | 48  | 55            | 125                              | 135 | 169 | 289               | 224 | 251 |
|               | 4      | 79  | 89            | 180                              | 185 | 198 | 306               | 264 | 289 |

Maximum flow rate for a complete return filter with a pressure drop  $\Delta p = 0.5$  bar.

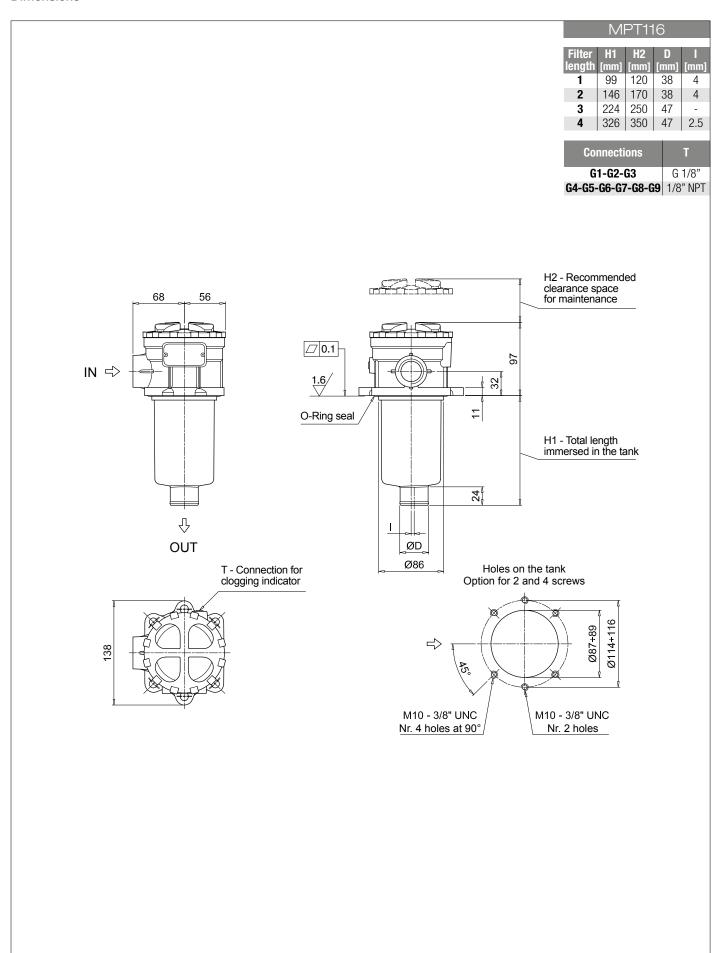
Connections of filter under test: G 1 1/4"

The reference fluid has a kinematic viscosity of 30 mm<sup>2</sup>/s (cSt) and a density of 0.86 kg/dm<sup>3</sup>.


For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

Please, contact our Sales Department for further additional information.

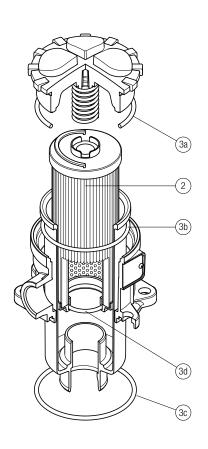



# MPT 116

### Designation & Ordering code






#### **Dimensions**





# MPT 116 SPARE PARTS

### Order number for spare parts



| Item:            | Q.ty: 1 pc.           |                    | 1 pc.<br>(3a ÷ 3d) |
|------------------|-----------------------|--------------------|--------------------|
| Filter<br>series | Filter element        | Seal Kit co<br>NBR | de number<br>FPM   |
| MPT 116          | See<br>order<br>table | 02050466           | 02050467           |



All data, details and words contained in this publication are provided for information purposes only.

MP Filtri reserves the right to make modifications to the models and versions of the described products at any time for both technical and / or commercial reasons.

The colors and the pictures of the products are purely indicative.

Any reproduction, partial or total, of this document is strictly forbidden.

All rights are strictly reserved.





### **WORLDWIDE NETWORK**

### **HEADQUARTERS**

#### MP Filtri S.p.A.

Pessano con Bornago Milano Italy sales@mpfiltri.com

#### **BRANCH OFFICES**

#### **ITALFILTRI LLC**

Moscow Russia mpfiltrirussia@yahoo.com

#### MP Filtri Canada Inc.

Concord, Ontario Canada sales@mpfiltricanada.com

#### **MP Filtri France SAS**

Lyon AURA France sales@mpfiltrifrance.com

#### **MP Filtri Germany GmbH**

St. Ingbert Germany sales@mpfiltri.de

#### MP Filtri India Pvt. Ltd.

Bangalore India sales@mpfiltri.co.in

#### **MP Filtri Middle East FZCO**

Dubai U.A.E. sales-me@mpfiltri.com

#### MP Filtri SEA PTE Ltd.

Singapore sales-sea@mpfiltri.com

#### MP Filtri (Shanghai) Co., Ltd.

Shanghai P.R. China sales@mpfiltrishanghai.com

#### MP Filtri U.K. Ltd.

Vale Park Evesham United Kingdom sales@mpfiltri.co.uk

### MP Filtri U.S.A. Inc.

Quakertown, PA U.S.A. sales@mpfiltriusa.com

# **PASSION TO PERFORM**

